giovedì, 3 Dicembre, 2020

SEGUICI SU:

DELLO STESSO AUTORE

INSTAGRAM

CORRELATI

Droni solari: dallo stato dell’arte alle nuove tecnologie

Parliamo di droni solari. Partiamo dallo stato dell’arte e individuiamo possibili nuove tecnologie per aumentare il tempo di volo.

Droni solari: una soluzione sostenibile ed innovativa

I droni solari sono un tipo di velivoli basati sulla radiazione solare come energia di propulsione. La sfida è di non avere tempi di volo limitati come nei droni tradizionali ed ottenere quindi elevate autonomie. I campi di applicazione sono: ricognizione, controllo immigrazione, sorveglianza ai confini, monitoraggio di aree vulcaniche, settore telecomunicazione, monitoraggio agricoltura, rilevamento di incendi boschivi.

Fotovoltaico sui droni solari

A seconda del tipo di applicazione si possono usare dei moduli in m-Si (silicio monocristallino) oppure moduli in Ga-As (Arseniuro di Gallio). Quello che cambia tra le due opzioni sono efficienza di conversione e costi. Il silicio monocristallino presenta un’efficienza tra il 15-22% con costi contenuti. L’Arseniuro di gallio risulta essere il modulo con efficienza più elevata: può raggiungere anche il 32%. I moduli sono installati su tutta l’apertura alare per ottenere un’elevata superficie esposta alla radiazione solare e quindi alta producibilità.

Droni solari, Velivo, Fotovoltaico, Rinnovabile, Sostenibile, Fuel cell, Drone solare, ibrido, innovazione, sviluppo tecnologico, batterie, motori elettrici, efficienza, autonomia, ricerca, Energy Close-up Engineering
bloomberg.com

Grazie ai moduli installati sui droni solari è possibile convertire l’energia solare in corrente continua DC. Al sistema è abbinato un MPPT (maximum power point tracker) in grado di inseguire costantemente il punto di massima potenza. A seconda dell’irraggiamento si ottiene la massima potenza che il pannello è in grado di erogare in un certo istante.

Dal solare tradizionale ad un sistema ibrido elettrico-solare

Per ottenere buone autonomie un drone, in generale, deve essere leggero in termini di peso. Il pacco batterie scelto è solitamente in litio-polimero perché offre alta capacità in termini di energia e basso peso (circa 200-250 Wh/kg). I motori elettrici, invece, sono scelti di tipo industriale per l’ottima durata, affidabilità e buon rapporto peso/potenza.

Un sistema di propulsione ibrido è suggerito nel caso di droni di piccole dimensioni (aperture alari massime di 2-3 metri). Passando da un sistema tradizionale ad uno ibrido solare il tempo di volo è aumentato di 8-10 volte.

Il sistema self-consumed: ibrido solare- fuel cell

Le batterie rappresentano il componente più pesante a bordo di un drone ed incidono drasticamente sul tempo di volo. Una soluzione innovativa è il sistema combinato di fotovoltaico e fuel-cell (PEMFC) caratterizzato da alta affidabilità e basso peso. Durante le ore diurne il fotovoltaico produce energia grazie alla radiazione solare incidente sui moduli. Un’aliquota di energia soddisfa il fabbisogno del velivolo per garantire il volo e quindi l’alimentazione sia dei motori che degli accessori. Un’altra parte è utilizzata per alimentare un elettrolizzatore che permette di ottenere idrogeno e ossigeno dall’acqua contenuta in un serbatoio. L’idrogeno e l’ossigeno prodotti sono stoccati in appositi serbatoi.

Droni solari, Velivo, Fotovoltaico, Rinnovabile, Sostenibile, Fuel cell, Drone solare, ibrido, innovazione, sviluppo tecnologico, batterie, motori elettrici, efficienza, autonomia, ricerca, Energy Close-up Engineering
researchgate.net

Durante le ore notturne il sistema aziona le fuel-cell poiché la radiazione solare è nulla. Attraverso una reazione esotermica tra idrogeno e ossigeno nella cella si ottiene energia elettrica. Grazie a questa produzione di energia, anche nelle ore notturne è garantita la copertura del fabbisogno del velivolo.

Il made in italy: HeliPlat del Politecnico di Torino

Il progetto italiano è stato il primo in Europa nel campo della stratosfera con una apertura alare di 75 m. HeliPlat è progettato per un tempo di volo di 4-6 mesi grazie ad un sistema ibrido solare-fuel cell. Rispetto ad un classico satellite è più economico, più vicino al suolo (quindi maggiore risoluzione) e più flessibile.

Da un’altezza di 17 km riesce a ricoprire un’area di 300-400 km di diametro. Con soli 8 velivoli si coprirebbe il versante sud del mar mediterraneo creando un vero e proprio sistema di controllo.

Sviluppi e miglioramenti per il futuro

I risultati ottenuti presentano già un progresso grazie alla notevole durata del volo. Il sistema è penalizzato solo dalla bassa efficienza relativa dei pannelli fotovoltaici ma il mondo della ricerca e sviluppo è orientato verso celle Tandem e nuove altre tecnologie che permetteranno di sfruttare meglio lo spettro di assorbimento ottenendo efficienze molto più elevate. Grazie a queste sarà possibile raggiungere tempi di volo di gran lunga superiori.  

Articolo a cura di Marco VILLANI

CUE FACT CHECKING

CloseupEngineering.it si impegna contro la divulgazione di fake news, perciò l’attendibilità delle informazioni riportate su energycue.it viene preventivamente verificata tramite ricerca di altre fonti.

Redazionehttps://cuengineering.it
Per redazione, intendiamo tutti gli autori occasionali che ci aiutano nella divulgazione delle novità più interessanti nel settore dell'ingegneria energetica, elettrica, ambientale... e non solo! Ragazzi e ragazze che hanno voluto approfondire un argomento, o che semplicemente volevano rendere pubblica la propria ricerca, tesi di laurea, o idea. Se volete scrivere per Noi, mandate un'email a info@energycue.it.