acqua-migliore.com
Articolo a cura di Ulderico DI CAPRIO
L’idrogeno è il miglior candidato ad essere il combustibile del domani. Infatti, può essere prodotto attraverso vari processi. Molti dei quali utilizzano fonti rinnovabili sia per l’apporto di energia, che per le materie prime. L’idrolisi termica dell’acqua è una di queste. Tale processo è molto versatile, in quanto sfrutta l’acqua e qualsiasi tra le fonti energetiche: nucleare, fossile o solare.
Alla base di questa tecnica di produzione di idrogeno, c’è la reazione inversa alla produzione dell’acqua. L’acqua è l’unico reagente di tale reazione e porta alla produzione di idrogeno molecolare e ossigeno molecolare.
2H2O⇌2H2+O2
Tale reazione avviene oltre i 3000°C. L’idrogeno è un ottimo combustibile e l’ossigeno è un comburente, ciò li porta a ricombinarsi e rilasciare, molto velocemente, l’energia immagazzinata. Considerando quando appena detto, tale questa tecnica non sembra molto promettente, anzi è controproducente, a causa delle elevate temperature richieste, e molto pericolosa, a causa delle esplosioni. Come rendere questa reazione fattibile e sicura? Bisogna trovare qualcosa che innalzi la capacità dell’acqua di dividersi e che allo stesso tempo non faccia incontrare idrogeno ed ossigeno. La soluzione è utilizzare un materiale in grado di assorbire e rilasciare ossigeno in una reazione ciclica.
Tale compito viene svolto da sostanze capaci di accumulare ossigeno e rilasciarlo “su richiesta”. La reazione globale viene quindi divisa in due parti.
L’ossidazione avviene a temperature e pressioni elevate (che dipendono dal materiale scelto), per favorire cinetica e termodinamica. La riduzione avviene a temperature a pressioni più basse rispetto alla prima, in quanto così l’allontanamento di idrogeno è favorito.
La produzione di idrogeno con idrolisi termochimica richiede un materiale che abbia sia buone capacità riduttive che ossidative. La sfida nello sviluppo di questo processo sta proprio nel trovare tale materiale. I migliori a svolgere questo compito sono ossidi di ferro, miscele solide di ossidi di cerio e zirconio e perovskite. Tutti questi materiali hanno mostrato ottime capacità di accumulo e rilascio di ossigeno.
I migliori risultati si stanno avendo con perovskiti artificiali (formula generale ABO). Il sito A ospita una miscela di lantanio e stronzio mente nel sito B si usa una miscela mista di manganese e ferro. Attraverso il sito B è possibile modulare la capacità di riduzione e ossidazione del materiale. Attraverso tali proprietà è possibile identificare e settare i parametri con i quali condurre il processo.
La Zecca di Stato sorprende con una moneta inaspettata dal valore di 20 euro, quando…
Non tutte le foreste rinfrescano allo stesso modo: lo rivela uno studio europeo. Negli ultimi…
Due sorelle inseparabili, unite da una somiglianza sorprendente: Noemi e la sorella sono due gocce…
Le raccomandate possono avere diversi colori. Un colore non porta buone notizie per il destinatario:…
Adattare la conservazione delle specie e la sostenibilità delle attività commerciali in un mondo che…
Ecco come riordinare subito casa tua semplicemente acquistando questo utile strumento da LIDL a 20…