nasa.gov
Maggio 2030 – Gli astronauti della NASA della colonia lunare internazionale raccolgono frutta da una serra progettata per riprodurre le condizioni climatiche della Terra. LED illuminano le piante durante i 14 giorni della notte lunare. L’energia elettrica viene prodotta da una macchina bislacca, la cui forma ricorda vagamente un fungo: il reattore nucleare KRUSTY.
Al suo interno, nuclei di Uranio 235 fissionano continuamente per opera dei neutroni termici producendo frammenti di fissione (Bario e Krypton in genere) ed altri neutroni dando vita ad una reazione a catena. I frammenti di fissione collidono con gli atomi circostanti, aumentandone l’energia cinetica media e, quindi, la temperatura del nocciolo. Tubi di calore trasferiscono il calore generato a piccoli motori Stirling collegati ad un generatore elettrico che trasforma il moto alternato in energia elettrica.
Il “Kilopower Reactor Using Stirling TechnologY” (KRUSTY) è un nuovo concetto di reattore sviluppato dalla NASA, testato al Nevada National Security Site tra novembre 2017 e marzo 2018.
Secondo Jim Reuter, NASA, direttore associato del Space Technology Mission Directorate (STMD):
Il reattore della NASA, studiato per produrre fino a 40 KW di potenza, presenta un nocciolo composto da una lega di uranio-235 e molibdeno, scelta per le sue ottime caratteristiche ad alte temperature. Il nocciolo è circondato da un riflettore di ossido di berillio per minimizzare la perdita di neutroni, rindirizzandoli all’interno del reattore. Il reattore è controllato tramite un’unica barra di carburo di boro che assorbe neutroni. All’accensione, la barra viene estratta dal nocciolo permettendo ai neutroni di cominciare la reazione a catena. Tubi di calore al sodio liquido permettono di trasferire l’energia termica generata dalle reazioni di fissione al motore Stirling (temperatura del sodio circa 600 °C in condizioni nominali). I tubi di calore, inventati a Los Alamos National Lab nel 1962, sono dispositivi per il raffreddamento che non richiedono pompe o ventole. Il dispositivo è composto da una coppia di cilindri cavi concentrici contenenti fluido operativo, sodio in questo caso, e il suo vapore. Per ottenere il passaggio di calore viene sfruttata la differenza di pressione di vapore tra i due estremi del tubo.
Tra novembre e marzo, i test della NASA al Nevada National Security Site si sono concentrati sulla resistenza dei componenti a stress termici e meccanici ed a diversi scenari incidentali. I risultati sono esaltanti. Secondo David Poston, capo-progettista del reattore a Los Alamos National Laboratory, l’obiettivo di questi test era duplice: (1) Dimostrare che il sistema è capace di generare energia elettrica da fissione, e (2) Testare la stabilità e la sicurezza del nuovo design.
Secondo Poston, NASA:
Abbiamo simulato ogni evenienza, in termini di operazioni nominali ed incidentali, e KRUSTY ha passato tutti i test a pieni voti
La colonizzazione della Luna e di Marte è un po’ più vicina.
Un team di ricercatori ha sviluppato un innovativo catalizzatore per la produzione di idrogeno pulito,…
Entro il 2050, fino a 220 milioni di persone rischiano di perdere l’accesso all’acqua potabile…
Un nuovo tipo di cella a combustibile a base di ossidi, sviluppato da scienziati dell'Università…
Deep Fission realizzerà il primo reattore nucleare sotterraneo negli Stati Uniti, integrando tecnologie già note.…
Il buco dell’ozono sull’Antartide nel 2025 è stato uno dei più piccoli degli ultimi decenni.…
Le cucine a gas emettono quantità significative di biossido di azoto (NO₂), un inquinante nocivo…