Silicon from Sand as Electric Energy Storage

South Australia. Adelaide-based Ammjohn engineering consultancy company and last-year students at the University of Adelaide developed a device known as TESS. The government grant them 400.000 AUD in order to take it from industrial prototype to commercial product. It is a Latent Heat Storage Device working by sand, its most important material. TESS is based on the latent heat properties of the silicon derived from normal sand and it can store electricity as thermal energy by melting tanks full of silicon. Both the melting temperature and the high latent heat capacity of the sand silicon makes it ideal for storage of big amount of energy.

ammjohn.com.au

TESS Project Chief Executive Officer Jonathan Whalley said, and I agree, “Storage was and is the next big challenge for energy generation worldwide. Renewable Energy Sources generally spill energy due to supply and demand mismatches, so we have designed the TESS device to capture this ‘spilt’ energy for later use or release to the grid. Our system also means that energy consumers will be able to purchase stored electricity off-peak at low tariffs, which ultimately means cheaper energy.”

The TESS device is small enough to fit inside a normal shipping container, but is readily scalable, as demand requires. TESS is capable, theoretically, to handle an increasing workload from 500 kW through to an industrial scale of up to several hundred MW. It is suitable, moreover, for both grid and off-grid applications and has been designed to overcome the intermittent nature of RES, such as wind and solar, by providing a stable energy output. Of course it can be integrated anywhere within an electricity network and it could be suitable for commercial and industrial businesses where heat and electricity are required. A commercial TESS prototype should be ready in the first months of 2016 to be used as a selling tool to potential clients for individual sites.

ammjohn.com.au

Whalley said also, “Energy prices are increasing around the world while storage technology costs are reducing, so we’re approaching the tipping point where energy storage systems are finally becoming commercially viable. We are developing an energy storage system to meet market demand. We anticipate that this will result in exponential growth of the energy storage market worldwide”.

Lorenzo Rubino

Laureato magistrale a 24 anni in ingegneria energetica al PoliTO. Esperto in efficienza energetica industriale, commerciale, residenziale. Progettista tecnico di impianti rinnovabili e tradizionali. Responsabile di #EnergyCuE da marzo 2015. Appassionato di nuove tecnologie e policy, soprattutto se finalizzate alla sostenibilità della produzione di energia. Mi sento curioso, riflessivo ma anche spontaneo, diretto e pragmatico, da buon ingegnere!

Recent Posts

Microplastiche e Belgica antarctica: prima evidenza di ingestione nell’insetto antartico

Un nuovo studio pubblicato sulla rivista Science of the Total Environment ha documentato per la…

10 ore ago

C3S e la criosfera: come i satelliti ci aiutano a monitorare l’evoluzione del ghiaccio terrestre

La criosfera è un componente fondamentale del sistema Terra, con un ruolo determinante nella regolazione…

2 giorni ago

L’energia del Sole trasforma il carbonio sotto la Terra

Osservata per la prima volta una reazione nucleare indotta da neutrini solari a bassissima energia.…

4 giorni ago

Energia pulita a partire dai rifiuti della carta: una nuova via per l’idrogeno

Un team di ricercatori ha sviluppato un innovativo catalizzatore per la produzione di idrogeno pulito,…

6 giorni ago

La forma delle città metterà a rischio l’accesso all’acqua per 220 milioni di persone entro il 2050

Entro il 2050, fino a 220 milioni di persone rischiano di perdere l’accesso all’acqua potabile…

1 settimana ago

Una svolta per l’energia a idrogeno: celle a combustibile efficienti a bassa temperatura

Un nuovo tipo di cella a combustibile a base di ossidi, sviluppato da scienziati dell'Università…

1 settimana ago